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Abstract
The power series method has been adapted to compute the spectrum of the
Schrödinger equation for central potential of the form V (r) = d−2

r2 + d−1

r
+∑∞

i=0 dir
i . The bound-state energies are given as zeros of a calculable function,

if the potential is confined in a spherical box. For an unconfined potential the
interval bounding the energy eigenvalues can be determined in a similar way
with an arbitrarily chosen precision. The very accurate results for various
spherically symmetric anharmonic potentials are presented.

PACS number: 03.65.Ge

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The exact solution of the Schrödinger equation can be obtained only for a few particular forms
of potentials, in other cases one has to resort to approximations or numerical techniques. Many
approximation methods have been developed for solving problems in one-dimensional space.
Approximate solutions to the Schrödinger equation have also been studied for spherically
symmetric potentials in D-dimensional space, both by methods elaborated for one-dimensional
space, e.g., the Hill determinant method [1], the variational approach [2], and by methods
dedicated to D-dimensional problems, e.g., the shifted 1/D expansion [3, 4]. Here we show
that highly accurate solutions to the Schrödinger equation can be determined for various
types of spherically symmetric potentials with the use of the Fröbenius method (FM). The
method consists in expanding the solution of a differential equation into power series [5],
and was originally applied by Barakat and Rosner [6] to compute the spectrum of a one-
dimensional quartic oscillator confined by impenetrable walls at x = ±R. The energy
eigenvalues of the system have been obtained numerically as zeros of a function, calculated
from its power series representation. Moreover, it has been shown that the bound-state energies
of the confined system approach rapidly those of the unconfined oscillator for increasing R.
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Low-lying eigenvalues for other one-dimensional potentials [7] have also been successfully
calculated in a similar way. Recently, a modified treatment of unconfined systems allowed
for a very accurate determination of the ground-state energy for the quartic oscillator [8]. In
all the cases studied the potential was a finite function, and a solution was expanded around
an ordinary point of the differential equation. Here we study the application of the FM for
solving the radial Schrödinger equation, which requires that an expansion around a regular
singular point be used.

The outline of the present work is as follows. In section 2 the solution of the radial
Schrödinger equation in the form of a generalized power series is discussed. The case of
a spherically symmetric potential bounded by an impenetrable wall at r = R is studied in
section 3. In this case, the energy eigenvalues can be easily determined by finding the roots of
the polynomial, which is illustrated in the example of the confined harmonic and anharmonic
oscillators and Hulthén potential. The case of an unconfined system is studied in section 4,
where a scheme for determining an arbitrarily large set of bound-state energies is developed.
After demonstrating the performance of the method in the exactly solvable example of the
Kratzer potential, the results for the unconfined oscillator are presented for various choices of
anharmonic parameters.

2. Expansion around a regular singular point

The Schrödinger equation for a spherically symmetric potential in three-dimensional space
can be reduced to an ordinary differential equation in the radial variable[

− 1

2r

d2

dr2
r +

l(l + 1)

2r2
+ V (r)

]
R(r) = λR(r), (1)

where l is the angular momentum quantum number, and the units h̄ = 1,m = 1 are used.
Upon introducing the function u(r) = rR(r), the differential equation (1) takes the form of
the one-dimensional Schrödinger eigenvalue problem[

−1

2

d2

dr2
+ Veff(r, l)

]
u(r) = λu(r), (2)

where the effective potential reads

Veff(r, l) = l(l + 1)

2r2
+ V (r). (3)

The point r = 0 is a regular singular point of the radial equation, if the potential V (r) diverges
but r2V (r) remains finite as r → 0, which is the case for the interaction potential of the form

V (r) = d−2

r2
+

d−1

r
+ Vreg(r), (4)

where the regular part is represented by a convergent series

Vreg(r) =
∞∑
i=0

dir
i . (5)

In this case, the FM can be applied with the radial wavefunction represented as a generalized
power series

u(r) = rδ

∞∑
i=0

air
i, (6)
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where a0 �= 0. In what follows, we will take a0 = 1, since normalization of the wavefunction
is irrelevant in our calculation. Substituting (6) into (2) we obtain the equation

−1

2

∞∑
i=0

[(i + δ)(i + δ − 1) − l(l + 1)]air
i +

( ∞∑
i=0

di−2r
i

)( ∞∑
i=0

air
i

)
= λ

∞∑
i=0

air
i+2, (7)

which, by comparing the coefficients of like powers of r, yields the recurrence relation

[(i + δ)(i + δ − 1) − l(l + 1)]ai − 2
i∑

n=0

di−2−nan + 2ai−2λ = 0, (8)

where ai = 0 for i < 0. Setting i = 0 in the above relation, we obtain the indicial equation

[δ(δ − 1) − l(l + 1) − 2d−2]a0 = 0, (9)

which is solved by

δ1 = 1
2

(
1 −

√
8d−2 + (1 + 2l)2

)
, δ2 = 1

2

(
1 +

√
8d−2 + (1 + 2l)2

)
. (10)

The Fuchs’s theorem [5] asserts that the generalized series (6) converges, and both linearly
independent solutions of the Schrödinger equation (2) are obtained as generalized series,
one with δ = δ1 and the other with δ = δ2 (except the special case when δ2 − δ1 =√

8d−2 + (1 + 2l)2 is equal to a non-negative integer). The value of δ determines the behaviour
of u(r) for r → 0, and only δ > 1

2 is acceptable [9], since only in this case the mean value of
the kinetic energy is finite. Such a solution to the Schrödinger equation (2) exists only if the
potential is such that d−2 > − 1

8 . This solution contains only the series with δ = δ2, and in the
following will be denoted by

u(r, λ) = rδ2

∞∑
i=0

air
i, (11)

where the dependence on the energy eigenvalue λ is explicitly marked. The coefficients of the
series are determined recurrently as

ai = −2λai−2 + 2
∑i−1

n=0 di−2−nan

i
(
i +

√
8d−2 + (1 + 2l)2

) . (12)

The function u(r, λ) has an important property that u(0, λ) = 0, which can be regarded as a
boundary condition for the radial equation at r = 0. The second boundary condition should
be chosen according to the physical bounds in the investigated problem.

3. Confined potentials

The simplest scheme arises in the case of radially symmetric potential V (r) additionally
bounded by an infinitely high wall at r = R. In this case, the second boundary condition for
a particle with angular momentum l is of the form

u(R, λ) = 0, (13)

yielding an exact quantization condition that gives the bound-state energies as zeros of a
calculable function. The values of λ, determined from the above condition, are denoted by
λnl , where n = 0, 1, . . . counts the number of zeros in the radial variable in the Sturm–
Liouville eigenvalue problem [10]. In the numerical calculation, the function u(R, λ) has to
be approximated by truncating the series in (11) at suitably high-order K, which can be done
with an arbitrary accuracy, as the series is convergent. The truncated function is a polynomial
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Figure 1. Behaviour of u(R, λ) for the spherically symmetric harmonic oscillator with ω = 1 and
l = 0 at R = 2.5.

of degree K in the variable λ, that can be used to advantage in determining the numerical
values of its zeros. In this way, an increasing amount of bound-state energies can be obtained
with increasing accuracy as the truncation order K → ∞. Considering the growing interest in
quantum confined systems, the method (and its possible modifications for different symmetries
of the confining box) can find application in the studies of semiconductor nanostructures such
as quantum dots [11–13]. Here we consider a few examples.

3.1. The harmonic oscillator

The performance of the FM will be demonstrated for the spherical harmonic oscillator

V (r) = ω2

2
r2, (14)

enclosed by a sphere of radius R. The typical behaviour of u(R, λ) as a function of λ is shown
in figure 1 in the example of the oscillator with ω = 1 for l = 0 and R = 2.5. The approximate
u(R, λ) is a polynomial in λ and the truncation affects only its behaviour for large λ. We
determine thus the bound-state energies as roots of the obtained polynomial with the use of the
NSolve procedure from the Mathematica package, without any need for introducing starting
values for λ. The stability of the numerical results was achieved by increasing the number of
non-vanishing terms K until the values of λnl(R), corresponding to the states (n, l) of angular
momentum l, become stable to the desired accuracy. The values of λnl(R), obtained for the
harmonic oscillator of frequency ω = 1, are compared in table 1 with the eigenvalues of the
unconfined oscillator, Enl = 2n + l + 3

2 . In figure 2 the low-lying state energies are plotted as
a function of the confinement radius R. One can observe how the non-degenerate levels of the
confined system approach the equidistant states of the unconfined oscillator, as the radius of
enclosure grows.

3.2. The anharmonic oscillator

The quantum anharmonic oscillator is widely used for describing the physical phenomena,
especially in the condensed matter and molecular physics. However, the case of a confined
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Figure 2. Behaviour of λnl(R) − λ00(R) for the harmonic oscillator as a function of the
confinement radius R.

Table 1. The low-lying energy levels of the harmonic oscillator with ω = 1 confined at various R.

l n λnl(1.5) λnl(2.5) λnl(3) λnl(3.5) λnl(4) Enl

0 0 2.504 9762 1.551 4217 1.506 0815 1.500 3995 1.500 0146 1.5
1 0 4.903 5904 2.688 1440 2.531 2925 2.502 9102 2.500 1438 2.5
0 1 9.135 4221 4.184 2613 3.664 2196 3.523 3023 3.501 6915 3.5
2 0 7.871 7305 3.953 5289 3.598 2477 3.512 5803 3.500 8421 3.5

anharmonic system has been discussed only for the one-dimensional example [6]. Here we
study the spherically symmetric anharmonic oscillator with a potential of the form

VAO(r) = ω2

2
r2 + gr2J (15)

for different values of the power J . The analysis can be simplified by using the rescaled
variables

r̂ = g− 1
2J+2 r, and λ̂ = λg− 2

2J+2

then equation (2) takes the form[
−1

2

d2

d̂r2
+

l(l + 1)

2̂r2
+ VAO( r̂ )

]
u( r̂ ) = λ̂u( r̂ ), (16)

where

VAO(̂r) = ẑr2 + r̂2J (17)

depends on the dimensionless parameter

z = ω2

2
g− 4

2J+2 , (18)

which accounts for a relative strength of the harmonicity and anharmonicity. In the following,
we skip the hats over r and λ. We consider the solution of (16), which is regular at r = 0, as
given by the generalized power series

u(r, λ) = rl+1
∞∑
i=0

air
2i (19)
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Table 2. The bound-state energies λnl(R) of the confined anharmonic oscillator.

l n z λnl(0.5) λnl(1) λnl(1.5) λnl(2) λnl(2.5)

0 0 5 20.098 750 27 6.392 918 17 5.108 642 45 5.069 740 45 5.069 663 68
4 20.028 406 81 6.132 287 81 4.691 291 08 4.633 484 73 4.633 308 31
3 19.957 993 89 5.867 539 35 4.247 150 28 4.160 267 90 4.159 847 13

−1 19.675 646 22 4.765 921 59 2.126 682 80 1.633 225 95 1.612 781 77
−3 19.534 053 95 4.188 602 46 0.804 479 58 −0.383 942 86 −0.540 591 17

1 0 5 40.859 898 45 12.087 751 01 8.802 120 12 8.637 447 01 8.636 883 71
4 40.766 487 91 11.730 352 16 8.164 580 83 7.939 507 15 7.938 336 01
3 40.673 026 07 11.369 722 35 7.498 294 58 7.189 633 53 7.187 145 92

−1 40.298 665 54 9.894 682 26 4.512 452 22 3.406 939 67 3.347 395 53
−3 40.111 177 31 9.137 546 42 2.810 772 29 0.782 858 38 0.504 133 22

with the recurrence relation of the form

ai = −2λai−1 + 2zai−2 + 2ai−(J+1)

2i(1 + 2i + 2l)
, (20)

where a0 = 1. In the case of the oscillator enclosed by a sphere of radius R the bound-
state energies are easily determined as zeros of u(R, λ). In table 2 the numerical results are
presented in the example of the quartic oscillator (J = 2) with different values of parameter
z and for different radii of enclosure R. The spectrum of an unconfined anharmonic oscillator
will be studied in the next section.

3.3. Hulthén potential

The FM can also be useful for computing energy eigenvalues, in the case when the series
expansion of its regular part (5) converges only in a finite interval ρV . In this case, the
convergence of the generalized series solution (11) is granted only for r < ρV and the problem
is well defined only for the confinement radius R < ρV . If the confining box projects beyond
the convergence sphere, we must be very careful, since for r > ρV the series representation
u(r, λ) does not necessarily coincide with the solution of the radial Schrödinger equation in
the potential V (r). As an example, we consider the Hulthén potential

V (r) = −δ e−δr

1 − e−δr
, (21)

when the screening parameter δ > 0 is not too large. To employ the FM we expand the
Hulthén potential into the Laurent series

V (r) = −1

r
+ Vreg(r), (22)

with the regular part given by

Vreg(r) = δ

2
− δ

∞∑
n=0

gn[δr]2n+1, (23)

where

gn = (−1)nβn+1

[2(n + 1)]!
, (24)
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Table 3. Bound-state energies of the Hulthén potential for various values of the radius of
confinement R.

l n = nr δ λnl(4) λnl(6) λnl(8) λnl(12) Enl

0 0 0.050 −0.458 5448 −0.475 2873 −0.475 3117 −0.475 3125 −0.475 3125
0.075 −0.446 3941 −0.463 1776 −0.463 2024 −0.463 2031 −0.463 2031

0 1 0.050 0.444 7886 −0.060 6327 −0.088 8523 −0.097 5630 −0.101 2500
0.075 0.456 7303 −0.049 2481 −0.077 6572 −0.086 4942 −0.090 3125

1 0 0.050 0.168 0730 −0.080 2458 −0.094 7675 −0.099 2341 −0.101 0425
0.075 0.180 0057 −0.068 7394 −0.083 4014 −0.087 9576 −0.089 8478

and βn are given [14] by a convenient expression

βn = (−1)n
n

22n − 1

2n−1∑
k=1

1

2k

k∑
j=1

(−1)j
(

k

j

)
j 2n−1. (25)

The convergence radius of (23) is ρV = 2π
δ

, and in the range 0 � r < ρV the potential (22)
can be approximated with an arbitrary accuracy by a series with a finite number of terms. With
the series truncated after the r2P +1 term, the recursion relation (12) takes the form

ai = −2ai−1 + 2
(

δ
2 − λ

)
ai−2 − 2

∑P +1
j=1 δ2j gj−1ai−(2j+1)

i(i + 2l + 1)
. (26)

In table 3 the numerical results are presented for different values of δ at various radii of
enclosure R < ρV . Numerical stability was achieved by increasing the number of terms
both in the series solution (11) and in the potential expansion (23) until the approximate
values λnl for fixed R become stable to the quoted accuracy. The table also contains the exact
eigenvalues Enl for the unconfined Hulthén potential, obtained analytically (l = 0) and by
numerical integration (l �= 0) [15].

4. Unconfined potentials

Now we come to the discussion of unconfined potentials, namely to the case of a particle
with the angular momentum l in a spherically symmetric potential of the form (4) without
any external enclosure. An unconfined system can also be effectively treated by the FM, as
demonstrated by the calculation of the ground-state energy of the one-dimensional anharmonic
oscillator to a very high precision of 1184-digits [8]. Here we show that the method can be
implemented in a way that also allows for computing the excited state energies. We take
the generalized series (11), as a solution of the radial Schrödinger equation, which fulfils the
boundary condition u(λ, 0) = 0, and consider two ways of imposing the second boundary
condition at finite r = R, namely u(R, λ) = 0 or u(1)(R, λ) = 0. At R → ∞ both conditions
are satisfied at the same values of λ, which correspond to the energy eigenvalues Enl of the
unconfined system, where n = 0, 1, 2, . . . . At finite R the values of λ are different: let us
denote by λkl the values satisfying

u(R, λkl) = 0 for k = 0, 1, . . . , (27)

and by λ′
kl those satisfying

u(1)(R, λ′
kl) = 0, for k = 0, 1, . . . . (28)

In both cases we deal with the Sturm–Liouville eigenvalue problem; the nodes of the function
u(r, λkl) in the radial variable divide thus the domain (0, R) precisely into k-parts [10], and
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Figure 3. Behaviour of u(R, λ) (the solid line) and u(1)(R, λ) (the dashed line) for the spherically
symmetric harmonic oscillator with ω = 1 and l = 0 at R = 2.5. The three first bounding intervals
are marked by a thick line.

the same is true for the function u(r, λ′
kl). The energy eigenvalues satisfy thus the following

inequalities:

λ′
0l < λ0l < λ′

1l < λ1l < λ′
2l < λ2l < · · · < λ′

kl < λkl < · · · . (29)

It is easy to check that the sign of u(R, λ) is opposite to that of u(1)(R, λ), for any value λ

lying within (λ′
kl, λkl), which will be called the bounding interval in the following. Whereas,

for values of λ in the interval (λkl, λ
′
k+1l ) the signs of u(R, λ) and u(1)(R, λ) are the same.

These properties are best illustrated in figure 3, in the example of u(r, λ) calculated for the
spherical harmonic oscillator with angular momentum l = 0.

Bound states in the radial potential V (r) are possible only for λ < limr→∞ V (r). In this
case, there exists a point Rc such that for r > Rc we have Veff(r, l) − λ > 0 and the sign of
u(2)(r, λ) is the same as that of u(r, λ), which implies that for r > Rc the function u(r, λ) must
neither have a local maximum if u(Rc, λ) > 0, nor a local minimum if u(Rc, λ) < 0. If both
u(Rc, λ) and u(1)(Rc, λ) are positive (negative), then u(r, λ) and u(1)(r, λ) tend monotonically
to the plus (minus) infinity. Therefore, if the point of imposing the boundary condition R is
larger than Rc, the following inequality is satisfied,

λ′
0l < E0l < λ0l < · · · < λ′

kl < Ekl < λkl < · · · < λ′
nl < Enl < λnl, (30)

where λnl < Veff(R, l). For increasing R, the energy λ′
kl(R) grows and λkl(R) decreases,

approaching the exact eigenvalue Ekl from both sides monotonically. This allows for
bounding the energy eigenvalues of an unconfined system with a required precision. With the
approximate u(R, λ), obtained by truncating the number of terms in the generalized power
series to K, both (27) and (28) are polynomial equations in λ. The large set of energy levels can
thus be determined numerically by finding the roots of polynomials. Generally, the bounding
intervals are larger for higher states but for increasing R all the bounding intervals shrink. We
determine thus the new bounding intervals with the value of R increased by a suitably chosen
�R. The iteration procedure is repeated for Ri = R + i�R, until the bounding energies
for a chosen state (k, l) become equal to the accuracy desired, which determines its energy
with that accuracy. If the procedure does not converge for the state of interest, the number of
terms K, which are included in the power series (11) should be increased.
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Figure 4. Convergence of λ11(R) − E11 and λ′
11(R) − E11 to zero, demonstrated as a function
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Table 4. Comparison of the convergence of λ11(R) and λ′
11(R) to the exact value E11 =

−1.4476568219254 for different values of R and �R.

i R �R λ11(Ri) λ′
11(Ri)

0 5 0.5 −1.3178526137388 −1.8092879070838
1 −1.3839260262988 −1.6834926644347
2 −1.4178923369387 −1.5810678698537
3 −1.4345142511694 −1.5094745737014

0 8 1 −1.4468612319721 −1.4500438665400
1 −1.4475622942994 −1.4478789515475
2 −1.4476472391241 −1.4476761151204
3 −1.4476559628487 −1.4476583796562

0 14 2 −1.4476568215565 −1.4476568224842
1 −1.4476568219238 −1.4476568219276
2 −1.4476568219254 −1.4476568219254

4.1. The Kratzer potential

For demonstrating the convergence of the algorithm previously formulated, we first consider
the Schrödinger problem in the Kratzer potential

V (r) = d−2

r2
+

d−1

r
, (31)

for which the exact energy levels are given by

Enl = −2d2
−1

(
2n + 1 +

√
(2l + 1)2 + 8d−2

)−2
, (n = 0, 1, 2, . . .). (32)

Choosing d−1 = −8 and d−2 = 4 as the parameters of the potential (31), we carry out the
calculation for the state (1, 1), taking the number of terms in the power series (11) suitably large
(K = 160) in order to assure the numerical stability. Table 4 shows with 14-digit precision
the values of λ11(Ri), obtained from the condition (27), and those of λ′

11(Ri), obtained from
(28), for Ri = R + i�R. The bounding interval shrinks very fast and the exact value of energy
is easily determined with 14-digit precision, E11 = −1.447 656 821 9254. Figure 4 shows
how the deviations from the exact energy monotonically diminish for increasing R, the energy
difference λ11(R) − E11 approaches zero from above, and λ′

11(R) − E11 from below.
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Table 5. The lowest bound-state energies of the quartic oscillator for negative values of z.

z E00 E01 E02 E03 E04

−10 −21.889 658 23 −21.667 599 59 −21.227 751 92 −20.577 769 33 −19.727 423 47
−9 −17.308 115 08 −17.056 343 13 −16.560 062 80 −15.831 552 72 −14.885 436 07
−8 −13.237 578 18 −12.946 304 09 −12.377 237 45 −11.550 865 71 −10.489 174 35
−7 −9.680 640 55 −9.334 032 78 −8.668 660 23 −7.719 398 51 −6.518 583 69
−6 −6.640 628 24 −6.211 333 59 −5.416 359 74 −4.313 404 68 −2.947 175 08

4.2. The anharmonic oscillator

The unconfined quantum anharmonic oscillator is one of the most frequently discussed
quantum systems. Especially the one-dimensional example, being the simplest tractable
model of quantum field theory [16], is routinely used for examining the validity of various
approximation methods [17], as its exact solution can be numerically determined to an arbitrary
accuracy [8, 18–20]. The D-dimensional case is much less studied; generally, a spherically
symmetric anharmonic potential (15) for different values of the anharmonicity power J is
discussed. The quartic potential (J = 2) was studied by means of various approximation
methods, e.g., the self-similar approximation [21], the random phase approximation [22] and
the artificial perturbation method [23]. There are also a few reports in the literature of the
numerically exact results for the quartic [18, 24, 25], sextic (J = 3) [1, 24] and octic (J = 4)

potential [24] in the limited range of the anharmonicity parameter z.
Here we show that the FM enables us to determine effectively the spectrum of the

unconfined spherical anharmonic oscillator (15) in the wide range of parameter z. With
the solution of the Schrödinger equation u(r, λ) in the form of the generalized series (19)
we determine the numerical values of bound-state energies, using the procedure formulated
in the beginning of this section. After checking that the results available in the literature
[1, 24, 25] are easily recovered to the quoted accuracy, we performed an extensive calculation
of the spectrum of spherically symmetric anharmonic oscillators. The highly accurate results
presented here may serve for testing the quality of various approximation methods. An
especially challenging test is provided by the data obtained for negative values of parameter z,
when the anharmonic potential has a Mexican hat shape. This range was not explored before,
and the numerical data for bound-state energies were lacking. Therefore, in table 5 we present
our results for several lowest state (n, l) energies of the quartic oscillator (J = 2) at negative
values of z. In table 6 we compare the bound-state energies for oscillators with different
anharmonicity powers (J = 2, 3, 4) at various values of z. The results up to 8-decimal
precision are quoted, but it is not difficult to improve the accuracy at will. However, one has
to note that the effort of the calculation increases for higher states. The appropriate shrinking
of the intervals bounding the higher states energies is achieved only at large R, which requires
the larger number of terms K to be included in the power series. The computational effort
increases strongly, when the parameter z becomes more negative, i.e., for increasing radius
of the hat. For example, equality of the values λ00(R) and λ′

00(R) with 8-digit accuracy was
achieved for z = −2 at the radius R = 3, which requires K = 65, while for z = −10 the
same is obtained only at R = 3.9, which requires K = 140.

Our results for the quartic oscillator are presented graphically in figure 5. The excitation
energies with respect to the ground state, Enl − E00, are plotted as a function of parameter z,
which covers the range −15 < z < 25. The values of z < 0 correspond to the Mexican hat,
and those of z > 0 to the single-well shape of the anharmonic potential (17). It is interesting
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Figure 5. The behaviour Enl − E00 as a function of z, the asymptotic behaviour of En − E0 =
n
√−4z is shown by dashed lines. Two points of level crossing are marked by circles.

Table 6. The low-lying eigenvalues of anharmonic oscillators for certain powers of anharmonicity
2J at different values of parameter z.

J z E00 E01 E02 E10 E03

2 −5 −4.119 111 33 −3.559 581 00 −2.591 375 76 −0.210 676 02 −1.300 274 63
−4 −2.103 494 62 −1.341 758 38 −0.151 623 31 1.573 350 20 1.360 987 87
−3 −0.542 125 26 0.500 947 41 1.955 808 51 3.177 122 98 3.716 716 98
−2 0.661 428 90 2.040 645 01 3.787 797 23 4.665 390 82 5.813 954 33

0.1 2.464 636 53 4.583 218 26 6.965 292 41 7.458 911 76 9.563 146 73
0.5 2.737 892 27 4.991 430 53 7.491 775 05 7.942 403 98 10.197 048 22
1 3.057 945 73 5.475 919 99 8.121 714 27 8.526 737 39 10.959 728 25
2 3.639 482 05 6.371 630 94 9.299 405 83 9.633 627 91 12.396 872 79
5 5.069 663 67 8.636 883 66 12.336 855 80 12.550 115 13 16.158 439 62
8 6.217 225 63 10.494 777 25 14.870 645 91 15.024 541 65 19.339 216 39

3 −8 −5.009 826 91 −4.085 816 39 −2.499 273 39 1.270 195 37 −0.376 121 49
−5 −1.398 616 13 −0.060 702 41 1.931 236 53 4.231 923 90 4.436 291 85
−2 1.241 449 88 3.208 456 49 5.723 568 78 7.058 032 62 8.686 894 46
−1 1.945 044 86 4.152 385 70 6.860 552 53 7.977 455 78 9.989 547 03

0.1 2.639 852 66 5.118 530 12 8.045 438 12 8.969 778 43 11.361 855 73
1 3.156 300 57 5.858 368 53 8.967 280 95 9.763 935 91 12.440 024 44

4 −8 −3.207 120 29 −1.834 342 72 0.369 155 24 4.031 708 82 3.245 222 74
−5 −0.572 392 28 1.199 307 11 3.749 325 88 6.246 321 14 6.932 073 43
−2 1.555 757 37 3.855 870 69 6.823 256 01 8.475 000 53 10.358 574 48
−1 2.165 259 09 4.662 764 45 7.782 509 48 9.219 184 47 11.444 451 27

0.1 2.785 948 28 5.508 217 86 8.801 597 88 10.034 954 45 12.607 376 64
1 3.258 870 03 6.168 872 93 9.608 194 32 10.698 253 37 13.534 823 09

5 0.1 2.911 881 67 5.817 478 81 9.380 319 19 10.834 778 15 13.544 224 29
1 3.356 014 45 6.429 098 65 10.118 304 92 11.423 420 67 14.384 327 80

to note that, in spite of this difference, the dependence of excitation energies on z is smooth
at the point separating the two cases, z = 0, which corresponds to the strong coupling limit,
g → ∞. Instead, the behaviour of excitation energies in the weak coupling limit (|z| → ∞)
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is very different for positive and negative z. For z → ∞ we recover the radial harmonic
oscillator of the frequency 2z, energy eigenvalues of which are given by

Enl −→
z→∞

(
2n + l + 3

2

)√
2z. (33)

In figure 5 one can observe how the levels with the same 2n + l become degenerate for
increasing z. For z < 0 the Mexican hat shaped anharmonic potential has a minimum at

rmin =
√

−z
2 . If z3 � l2, the minimum of Veff is close to rmin and the effective potential is

approximated well by

Veff(r) ≈ −z2

4
+

1

2
(−4z)

(
r −

√−z

2

)2

, (34)

which does not depend on l, and corresponds to the one-dimensional harmonic oscillator of
the frequency

√−4z. Therefore, in the limit z → −∞ we have

En −→
z→∞ −z2

4
+

(
n +

1

2

) √−4z (n = 0, 1, 2, . . .). (35)

In figure 5 the grouping of states with different quantum numbers l but the same value of n
can be observed for strongly negative values of z. For z → −∞ all the states in the group
approach the asymptotic behaviour of En − E0 = n

√−4z.
One can also note an interesting phenomenon of level crossing that appears in the range

of z < 0: at a certain negative value of z two adjacent eigenvalues become degenerate. The
two examples in figure 5 are marked by circles: the crossing point for the states (1, 0), (0, 3),
which appears at z1

∼= − 3.736 563 82, and the crossing point for (1, 0), (0, 4), which appears
at z2

∼= − 5.420 078 03. The configuration of five lowest states, which, for z > z1, is
given by (0, 0), (0, 1), (0, 2), (1, 0), (0, 3), changes into (0, 0), (0, 1), (0, 2), (0, 3), (1, 0) for
z2 < z < z1, and into (0, 0), (0, 1), (0, 2), (0, 3), (0, 4) for z < z2. It should be stressed that
in the case of the one-dimensional anharmonic oscillator the phenomenon of level crossing
does not appear, this becomes possible only for systems of D � 2 dimensions.

5. Conclusion

We have shown that the application of the Fröbenius method to the spherically symmetrical
potentials of the form V (r) = d−2

r2 + d−1

r
+

∑∞
i=0 dir

i allows an easy determination of the energy
spectrum. This was demonstrated first for systems enclosed in a spherical box of radius R,
by studying the confined harmonic and anharmonic oscillators and Hulthén potential. With
the increasing radius of confinement the bound-state energies have been shown to approach
those of the corresponding unconfined systems. Even in the case of the Hulthén potential,
when the convergence radius of the potential is finite, we obtain quite good approximations to
the low-lying spectrum of the unconfined potential, if the screening is not too strong. Later,
we developed an efficient scheme for computing eigenvalues of the Schrödinger equation for
unconfined potentials with a controlled accuracy. The method allowed us to determine the low-
lying state energies of spherically symmetric anharmonic oscillators with very high accuracy
and moderate effort. Determination of energies becomes computationally more demanding
for higher states, since more terms have to be included in the generalized power series. Our
calculations cover a broad range of anharmonic parameters, both in the case of single-well
potential and for the Mexican hat shape. In the latter case, the computational effort increases
strongly with the increasing radius of the hat.

The method presented in this work can be easily applied for computing the precise
spectrum of other spherically symmetric potentials. In the present work, we have studied the
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case of three-dimensional space but the calculation of energy levels in the two-dimensional
case can be performed along similar lines. The results in even and odd higher dimension D
can be easily derived from those in two- and three-dimensional space, respectively, via the
transformation l → l + D−3

2 . One has to add that the method can also be used to determine
the approximate wavefunctions. After substituting the calculated bound-state energy to the
recursion relation (12) the coefficients of the generalized series (11) can be successively
determined in order to obtain the unnormalized wavefunction as a sum of the series.
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